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Random sequential adsorption on a triangular lattice
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~Received 19 February 1997; revised manuscript received 6 June 1997!

Random sequential adsorption of objects of various shapes on a planar triangular lattice is studied by Monte
Carlo simulation. Various shapes are made by self-avoiding random walks on the lattice. At the late stage of
deposition, the approach to the jamming coverage is exponential for all shapes and of the same form as for the
square lattice. Jamming configurations consist of clusters of blocked sites and domains of parallel deposited
objects. The jamming coverage decays exponentially with the sizes of the deposited objects. For the deposi-
tion of mixtures the jamming coverage increases with the number of components in the mixture.
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I. INTRODUCTION

A number of processes in physics, chemistry, and b
ogy, where events occur essentially irreversibly on the ti
scales of interest, may be modeled by random seque
adsorption~RSA! on a lattice. RSA, or irreversible depos
tion, is a process in which objects of a specified shape
randomly and sequentially adsorbed on a substrate.

In real systems one needs to take into account the in
action between the bulk particles and the surface and also
interaction between the adsorbed and the bulk particles.
shall focus our attention on the case in which the partic
surface interaction disallows desorption from or diffusion
the surface and its range is small compared to the size o
particles. We shall also assume that the forces among
adsorbing particles are repulsive, so they allow formation
only one layer. Since the diffusion of adsorbed objects is
allowed, once an object is placed it affects the geometry
all later placements, even though each placement hap
completely randomly. Thus the dominant effect in RSA
the blocking of the available substrate area and the limit
~‘‘jamming’’ ! coverageu~`! is less than in close packing
The kinetic properties of a deposition process are descr
by the time evolution of the coverageu(t), which is the
fraction of the substrate area occupied by the adsorbed
ticles. For a review of RSA models, see@1#.

Experimentally, RSA has been observed, for example
oxidation of one-dimensional polymer chains@2#, formation
of polymer brush films@3#, adhesion of colloidal particles o
solid substrates@4#, adsorption of proteins at phospholip
bilayers that are the natural surface for adsorption of prote
in living cells @5#, particles in biological membranes@6#, and
spatial patterns in ecological systems@7#.

In one dimension most problems have been solved a
lytically @8–10#. The placing of an object on a line divide
the line into two independent systems that can be trea
separately. It is this property that has made analytic prog
possible and it does not exist for two-dimensional lattic
Theoretical studies of RSA also include series expans
@11–13# and Monte Carlo simulations@14–19#.

Depending on the system of interest, the substrate ca
continuum or discrete and RSA models can differ in su
strate dimensionality. For lattice RSA models, the appro
561063-651X/97/56~6!/6904~5!/$10.00
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to the jamming coverage is exponential@16–18#:

u~ t !5u~`!2Ae2t/s, ~1!

whereA ands are parameters that depend on the shape
orientational freedom of depositing objects. In a Monte Ca
study @16# of the deposition of line segments on a squa
lattice, it was found thatA depends on the line lengthl (A
;1/l ), but s is independent ofl with a numerical value
s.0.5. The jamming coverage decreases exponentially w
the size of depositing objects for small object sizes~mea-
sured in lattice spacing! @17#.

Much attention has been paid to the RSA on square
tices, but there are only a few studies of RSA on other ty
of lattices such as triangular or hexagonal lattices@1,20#.

II. KINETICS OF IRREVERSIBLE DEPOSITION
ON A TRIANGULAR LATTICE

In the present work we study irreversible deposition
objects of various shapes on a triangular lattice by Mo
Carlo simulations. The depositing objects are formed by s
avoiding random walks on the lattice. For a small number
steps it is easy to find all the shapes that may have a diffe
long-time behavior ofu(t) and different jamming coverage
u~`!. In order to make a systematic approach to this pr
lem, we performed numerical simulations for all such sha
of length,l 51, 2, and 3. The results of these simulations a
shown in Table I. On a triangular lattice we can form shap
with a symmetry axis of first, second, third, and sixth ord
In order to have at least two representative objects for e
order of symmetry, we performed the simulations for thr
more objects, one with a symmetry axis of third order a
two with symmetry axes of sixth order, and these results
also given in Table I.

The Monte Carlo simulations are performed on a triang
lar lattice of sizeL5128. Periodic boundary conditions ar
used in all directions and objects are not allowed to overl

At each deposition attempt we randomly select a latt
site. If the selected site is unoccupied, we try to deposit
object, i.e., we fix the beginning of the walk that makes t
shape at this site and try to place it in any of the six poss
orientations. If all successivel sites are unoccupied we oc
6904 © 1997 The American Physical Society
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56 6905RANDOM SEQUENTIAL ADSORPTION ONA . . .
cupy thesel 11 sites and deposit the segment. If the attem
fails, we randomly choose another orientation and so
until all six possibilities are examined. In the case that
object cannot be placed in any of the six directions, this
is denoted as inaccessible. During the simulation we rec
the number of all inaccessible sites in the lattice. These
clude the occupied sites and the sites that are unoccupie
cannot be the beginning of the walk. If we select an inacc
sible site, we do not attempt to deposit the object but
crease the time by one unit. The jamming limit is reach
when the number of inaccessible sites is equal to the t
number of sites in the lattice. The time is counted by
number of attempts to select a lattice site and scaled by
total number of lattice sites. The data are averaged over
independent runs for each shape.

For all the shapes from Table I plots of ln@u(`)2u(t)# vs t
are straight lines for the late stages of deposition. This s
gests that the approach to the jamming limit in the case

TABLE I. Parameterss andA and jamming coveragesu~`! for
various shapes on a triangular lattice. Plots ofu~`! vs s are shown
in Fig. 2, as marked in the last column.
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triangular lattice is also exponential and of the form~1!, the
same as in the case of a square lattice, with parameterss, A,
andu~`!, which depend on the shape of a deposited obje

The parameterss andA depend also on the orientation
freedom of deposited objects and they are very sensitiv
the rules of deposition. The values of the rates are deter-
mined from the slope of the lines and for the describ
model they depend mostly on the order of symmetry of
shape. According tos, all the shapes from Table I can b
divided into four groups:~i! shapes with a symmetry axis o
first order withs.1.1, ~ii ! shapes with a symmetry axis o
second order withs.0.57,~iii ! shapes with a symmetry axi
of third order withs.0.46, and~iv! shapes with a symmetry
axis of sixth order withs.0.33. The shapes with a highe
order of symmetry have lower values ofs, which means that
they approach their jamming limit more rapidly.

Simulations are also performed for various sizes of
basic shapes shown in the first column of Table II. For ea
given basic shape, numerical results are obtained for s
<10 in lattice spacing. These objects can be considere
small and at the same time the finite-size effects can be
glected@16#. The sizes is taken as the greatest dimension
the object, i.e., as the greatest projection of the walk t
makes the object on one of the six directions. Thus the
mension of a dot iss50, the dimension of a one-step walk

TABLE II. Parametersu0 , u1 , andr for various shapes. Simu
lations are performed for these basic shapes of sizess<10 in lattice
spacing. Plots ofu~`! vs s are shown in Fig. 2, as marked in the la
column.
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FIG. 1. Illustration of the construction of the objects larger th
the basic ones:~a! the basic shape marked in the tables with~3! and
the objects obtained by repeating each step of this object two
three times and~b! triangles of size 1–3 in lattice spacing.
FIG. 2. Rates vs the length of the lines~in lattice spacing!.
-
the
FIG. 3. Dependence ofu~`! on the size of
depositing objects~in lattice spacing! for the ba-
sic shapes from Table II, marked with corre
sponding numbers. The dotted lines represent
exponential fit of the formu(`)5u01u1e2s/r .



i
f
a
t

se
ig

a
1

el
t

a
n
it
b
th
in

of
is
nd

vio

b-
t i
ro
u

d
ts
in

tte

ect
rom

t is
en

on
the

ing

al
s a
ced
e

e

th-
the
ges
ited
gu-

of
es,
on-
ters

of
re
for
ht-
ix-

n

or

56 6907RANDOM SEQUENTIAL ADSORPTION ONA . . .
s51, and for example, the dimension of the object marked
the tables with~3! is s51.5 in lattice spacing. Objects o
various sizes are made by repeating each step of a b
shape the same number of times. Exception is made for
angles and hexagons, marked in the tables with~2! and~12!,
respectively, where larger objects also occupy all compri
sites. The construction of larger objects is illustrated in F
1. In Fig. 1~a! the basic shape marked in the tables with~3! is
shown together with the objects obtained by repeating e
step of this object two and three times and their sizes are
3, and 4.5 respectively. Triangles of size 1–3 are shown
Fig. 1~b!. The way in which the sites are connected is irr
evant because it is the arrangement of the occupied sites
matters.

When a dimension of an object increases, a slight incre
of s with respect to the value for the basic shape was fou
This dependence is shown in Fig. 2 for straight lines and
similar for all the shapes. This kind of dependence might
a consequence of the rules of deposition we used, toge
with the orientational freedom of depositing objects, i.e.,
the case of a square lattices does not depend on the size
depositing objects@16,17#, suggesting that this difference
due to the number of possible orientations on a square a
triangular lattice.

On the other hand, the parameterA decreases with the
object size for the same type of shape. This kind of beha
was also observed for the square lattice@16,17#.

III. JAMMING COVERAGES AND JAMMING
CONFIGURATIONS ON A TRIANGULAR LATTICE

Jamming coverageu~`! depends on the shape of the o
ject and on its dimension. Qualitatively, we could say tha
depends on the local geometry of the shape, i.e., on the p
ability that the neighboring sites of an adsorbed object wo
be blocked by another adsorbed object. For a fixedl , u~`!
has the highest values for straight lines.

For the same type of shape the jamming coverage
creases when the size of the object increases. The plo
u~`! vs s for the basic shapes from Table II are shown
Fig. 3 and marked with corresponding numbers. The do
lines represent the exponential fit of the form

FIG. 4. Jamming coverages for deposition of line segments o
triangular~triangles! and square~squares! lattice vs the length of the
lines ~in lattice spacing!.
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u~`!5u01u1e2s/r , ~2!

whereu0 , u1 , andr are parameters that depend on the obj
shape and are given in Table II for each basic shape. F
Fig. 3 we can see that the couples of shapes marked with~5!
and ~7! and with ~8! and ~11! show a similar behavior of
jamming coverage with the object size, suggesting that i
rather irrelevant which end of the walk we fix at the chos
site.

Jamming coverages for the deposition of straight lines
a triangular and a square lattice are shown together vs
length of the lines in Fig. 4. We can see that the jamm
coverages have greater values on the square lattice~except
for one-step lines!. This difference is due to the orientation
freedom of depositing lines: On a triangular lattice there i
greater number of possible orientations and an enhan
probability for blocking of lattice sites. This effect is mor
prominent for longer lines.

A typical jamming configuration for the deposition of lin
segments of lengthl 510 is shown in Fig. 5. At very early
times, deposited lines do not ‘‘feel’’ the presence of the o
ers and are adsorbed in any of the six orientations with
same probability. However, lines deposited in the late sta
of deposition must deposit parallel to the already depos
ones in order to avoid an intersection. The jamming confi
ration consists of domains of parallel lines and of clusters
blocked sites. If the depositing objects are not straight lin
there are also clusters of blocked sites in the jamming c
figurations, but their sizes are smaller. Sizes of these clus
are proportional to the size of depositing objects.

IV. JAMMING COVERAGES FOR DEPOSITION
OF MIXTURES OF LINE SEGMENTS

Jamming coverages for the deposition of mixtures
straight lines of various lengths on a triangular lattice a
also determined numerically. Simulations are performed
two-component, three-component, and up to eig
component mixtures. In the case of the two-component m

a

FIG. 5. Typical jamming configuration on a triangular lattice f
straight lines of lengthl 510 ~in lattice spacing!. Blocked regions
are black and occupied sites are shown in white.
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ture lines of lengthl 51 and 2 are adsorbed with equal pro
ability. The three-component mixture is made by adding
line segment of lengthl 53 and so on. Generally, a
n-component mixture contains lines of lengthl 51,2,...,n and
all of them are adsorbed with equal probability. A lattice s
is denoted as inaccessible if it is occupied or it cannot be
beginning of either of the components, i.e., a line segmen
length l 51 cannot be placed with one end in that site. T
data are averaged over 100 independent runs for each
ture.

The dependence ofu~`! on the number of components i
the mixturen is shown in Fig. 6. We can see that the jam
ming coverage increases withn, in spite of the fact that the

FIG. 6. Dependence ofu~`! on the number of components~line
segments of various lengths! in the mixture.
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number of components is always increased by adding a
segment of a greater length.

V. CONCLUSION

We have studied the single-layer deposition of objects
various shapes on a triangular lattice. The shapes are m
by self-avoiding random walks on the lattice. The approa
to the jamming limit is exponential for all the shapes with t
rate s dependent mostly on the order of symmetry of t
shape. The shapes of higher order of symmetry have lo
values ofs, i.e., they approach their jamming limit mor
rapidly.

The jamming coverageu~`! depends on the local geom
etry of the shape, i.e., on the shape and size of the adsor
object. For a fixed length of the walk that makes the sha
u~`! has the highest values for straight lines, which have
lowest probability for blocking their neighboring sites. Th
jamming coverage decays exponentially with the size of
object for small object sizes. If we compare results for RS
of straight lines on a square and a triangular lattice, t
decay is more rapid for a triangular lattice.

Jamming patterns consist of clusters of blocked sites
of domains of parallel deposited objects. The sizes of cl
ters of blocked sites are proportional to the size of depos
objects and the sizes of domains of parallel deposited obj
are greater for elongated shapes.

The jamming coverage for the deposition of mixtures
creases with the number of components in the mixture. T
effect is ‘‘stronger’’ than the decrease of the jamming co
erage with the maximal length of the components that m
the mixture.
s.
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