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Random sequential adsorption on a triangular lattice
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Random sequential adsorption of objects of various shapes on a planar triangular lattice is studied by Monte
Carlo simulation. Various shapes are made by self-avoiding random walks on the lattice. At the late stage of
deposition, the approach to the jamming coverage is exponential for all shapes and of the same form as for the
square lattice. Jamming configurations consist of clusters of blocked sites and domains of parallel deposited
objects. The jamming coverage decays exponentially with thessafehe deposited objects. For the deposi-
tion of mixtures the jamming coverage increases with the number of components in the mixture.
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PACS numbdis): 61.43—]

I. INTRODUCTION to the jamming coverage is exponentiab—18:

A number of processes in physics, chemistry, and biol- 6(t)=6(=)—Ae e, (1)
ogy, where events occur essentially irreversibly on the time
scales of interest, may be modeled by random sequentiathereA ando are parameters that depend on the shape and
adsorption(RSA) on a lattice. RSA, or irreversible deposi- orientational freedom of depositing objects. In a Monte Carlo
tion, is a process in which objects of a specified shape argtudy [16] of the deposition of line segments on a square
randomly and sequentially adsorbed on a substrate. lattice, it was found thaA depends on the line length(A

In real systems one needs to take into account the inter=1/), but ¢ is independent of with a numerical value
action between the bulk particles and the surface and also the=0.5. The jamming coverage decreases exponentially with
interaction between the adsorbed and the bulk particles. Wee size of depositing objects for small object sizewa-
shall focus our attention on the case in which the particlesured in lattice spacind17].
surface interaction disallows desorption from or diffusion on  Much attention has been paid to the RSA on square lat-
the surface and its range is small compared to the size of thiéces, but there are only a few studies of RSA on other types
particles. We shall also assume that the forces among thef lattices such as triangular or hexagonal lattice20].
adsorbing particles are repulsive, so they allow formation of
only one layer. Since_ the'diffusion (_)f adsorbed objects is not Il. KINETICS OF IRREVERSIBLE DEPOSITION
allowed, once an object is placed it affects the geometry of ON A TRIANGULAR LATTICE
all later placements, even though each placement happens
completely randomly. Thus the dominant effect in RSA is In the present work we study irreversible deposition of
the blocking of the available substrate area and the limitingobjects of various shapes on a triangular lattice by Monte
(“jamming”) coveraged(«) is less than in close packing. Carlo simulations. The depositing objects are formed by self-
The kinetic properties of a deposition process are describeavoiding random walks on the lattice. For a small number of
by the time evolution of the coveragg(t), which is the stepsitis easy to find all the shapes that may have a different
fraction of the substrate area occupied by the adsorbed paleng-time behavior oB(t) and different jamming coverages
ticles. For a review of RSA models, sgH. 6(«). In order to make a systematic approach to this prob-

Experimentally, RSA has been observed, for example, inem, we performed numerical simulations for all such shapes
oxidation of one-dimensional polymer chaif, formation  of length,I=1, 2, and 3. The results of these simulations are
of polymer brush filmg3], adhesion of colloidal particles on shown in Table I. On a triangular lattice we can form shapes
solid substrate$4], adsorption of proteins at phospholipid with a symmetry axis of first, second, third, and sixth order.
bilayers that are the natural surface for adsorption of proteing1 order to have at least two representative objects for each
in living cells[5], particles in biological membrang6], and  order of symmetry, we performed the simulations for three
spatial patterns in ecological systefs. more objects, one with a symmetry axis of third order and

In one dimension most problems have been solved andwo with symmetry axes of sixth order, and these results are
lytically [8—10]. The placing of an object on a line divides also given in Table I.
the line into two independent systems that can be treated The Monte Carlo simulations are performed on a triangu-
separately. It is this property that has made analytic progredar lattice of sizeL =128. Periodic boundary conditions are
possible and it does not exist for two-dimensional latticesused in all directions and objects are not allowed to overlap.
Theoretical studies of RSA also include series expansions At each deposition attempt we randomly select a lattice
[11-13 and Monte Carlo simulationg4-19. site. If the selected site is unoccupied, we try to deposit the

Depending on the system of interest, the substrate can babject, i.e., we fix the beginning of the walk that makes the
continuum or discrete and RSA models can differ in sub-shape at this site and try to place it in any of the six possible
strate dimensionality. For lattice RSA models, the approaclorientations. If all successiviesites are unoccupied we oc-
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TABLE I. Parametersr andA and jamming coverage®) for TABLE II. Parameterd),, 6,, andr for various shapes. Simu-
various shapes on a triangular lattice. Plot¥)@f) vs s are shown lations are performed for these basic shapes of sizek) in lattice
in Fig. 2, as marked in the last column. spacing. Plots of(«) vs s are shown in Fig. 2, as marked in the last
[ shape I A 9(c0) | column.
basic shape 9 0, r
(=1 —0 0,548 1,168 0,9243 (1) :
o—o 0,6741 0,3298 3,1405 (1)
t=2  e—— 0,562 1,016 0,8456 AN 0,6086 0,3882 1,6621 (2)
,_/ 1,067 0,287 0,8386 (3)
/ 0,5038 0,4966 3,7284 (3)
AN 0451 0,803 0,8139 (2)
V4 0,6001 0,3980 1,8272 (4)
£=3 o—o—s—s 0,575 0,894 0,7960
/ 2 14,1862 5
o—o—j 1,091 0,327 0,7699 (5) 04941 0,505 ’ (5)
AN 1,069 0,303 0,7712 (8) ,,_j—o 0,4925 0,5063 3,7163  (6)
o/ 0594 1,030 07461 (6)
0,4822 0,5161 34796 (7)
1,085 0,387 0,7677 (7)
\ 0,4465 0.5508 3,9779 (8)
1,087 0,353 0,7232 (9)
o/ 0559 0495 07682 (4) . > 0,3287 0,6708 3,7873  (9)
;{ 1,054 0,290 0,7770 (10) i 0,3414 0,6602 4,6614 (10)
l 1,069 0,267 0,7773  (11) k 04419 05564 4,0734 (11)
(=6 gj 0,337 0,278 0,6847 (12) 9 05887 04109 14104 (12)
L=11 X ': j 0,460 0,944 0,6545
triangular lattice is also exponential and of the fofh), the
same as in the case of a square lattice, with parameteks
/=12 0,328 0,297 0,6132 and 6(«), which depend on the shape of a deposited object.
The parameters- and A depend also on the orientational
freedom of deposited objects and they are very sensitive to
the rules of deposition. The values of the ratare deter-

mined from the slope of the lines and for the described

cupy thesd + 1 sites and deposit the segment. If the attempimodel they depend mostly on the order of symmetry of the
fails, we randomly choose another orientation and so onshape. According tar, all the shapes from Table | can be
until all six possibilities are examined. In the case that thedivided into four groups(i) shapes with a symmetry axis of
object cannot be placed in any of the six directions, this sitdirst order witho=1.1, (ii) shapes with a symmetry axis of
is denoted as inaccessible. During the simulation we recordecond order witlr=0.57, (iii ) shapes with a symmetry axis
the number of all inaccessible sites in the lattice. These inef third order witho=0.46, andiiv) shapes with a symmetry
clude the occupied sites and the sites that are unoccupied bakis of sixth order witho=0.33. The shapes with a higher
cannot be the beginning of the walk. If we select an inacceserder of symmetry have lower values @f which means that
sible site, we do not attempt to deposit the object but inthey approach their jamming limit more rapidly.
crease the time by one unit. The jamming limit is reached Simulations are also performed for various sizes of the
when the number of inaccessible sites is equal to the totdasic shapes shown in the first column of Table II. For each
number of sites in the lattice. The time is counted by thegiven basic shape, numerical results are obtained for sizes
number of attempts to select a lattice site and scaled by th&10 in lattice spacing. These objects can be considered as
total number of lattice sites. The data are averaged over 108mall and at the same time the finite-size effects can be ne-
independent runs for each shape. glected[16]. The sizes is taken as the greatest dimension of

For all the shapes from Table | plots of tfe) — 6(t)] vst the object, i.e., as the greatest projection of the walk that
are straight lines for the late stages of deposition. This sugnakes the object on one of the six directions. Thus the di-
gests that the approach to the jamming limit in the case of aension of a dot is= 0, the dimension of a one-step walk is
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FIG. 1. lllustration of the construction of the objects larger than
the basic oneqa) the basic shape marked in the tables wihand
the objects obtained by repeating each step of this object two and
three times andb) triangles of size 1-3 in lattice spacing.
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FIG. 4. Jamming coverages for deposition of line segments on a
triangular(triangles and squarésquareslattice vs the length of the
lines (in lattice spaciny

FIG. 5. Typical jamming configuration on a triangular lattice for

s=1, and for example, the dimension of the object marked instraight lines of length=10 (in lattice spacing Blocked regions

the tables with(3) is s=1.5 in lattice spacing. Objects of are black and occupied sites are shown in white.

various sizes are made by repeating each step of a basic —or

shape the same number of times. Exception is made for tri- 0()= 6o+ 618>, @)
angles and hexagons, marked in the tables y@itand(12),

respectively, where larger objects also occupy all comprisewhereéy,, 6,, andr are parameters that depend on the object
sites. The construction of larger objects is illustrated in Fig.shape and are given in Table Il for each basic shape. From
1. In Fig. 1(a) the basic shape marked in the tables w@his  Fig. 3 we can see that the couples of shapes marked(&)ith
shown together with the objects obtained by repeating eachnd (7) and with (8) and (11) show a similar behavior of
step of this object two and three times and their sizes are 1.5amming coverage with the object size, suggesting that it is
3, and 4.5 respectively. Triangles of size 1-3 are shown imather irrelevant which end of the walk we fix at the chosen
Fig. 1(b). The way in which the sites are connected is irrel-site.

evant because it is the arrangement of the occupied sites that Jamming coverages for the deposition of straight lines on
matters. a triangular and a square lattice are shown together vs the

When a dimension of an object increases, a slight increadength of the lines in Fig. 4. We can see that the jamming
of o with respect to the value for the basic shape was foundcoverages have greater values on the square lggiazept
This dependence is shown in Fig. 2 for straight lines and it ifor one-step lings This difference is due to the orientational
similar for all the shapes. This kind of dependence might bdreedom of depositing lines: On a triangular lattice there is a
a consequence of the rules of deposition we used, togethgreater number of possible orientations and an enhanced
with the orientational freedom of depositing objects, i.e., inprobability for blocking of lattice sites. This effect is more
the case of a square lattieedoes not depend on the size of prominent for longer lines.
depositing object$16,17], suggesting that this difference is A typical jamming configuration for the deposition of line
due to the number of possible orientations on a square andsegments of length=10 is shown in Fig. 5. At very early
triangular lattice. times, deposited lines do not “feel” the presence of the oth-

On the other hand, the paramet&rdecreases with the ers and are adsorbed in any of the six orientations with the
object size for the same type of shape. This kind of behaviosame probability. However, lines deposited in the late stages
was also observed for the square latfit6,17]. of deposition must deposit parallel to the already deposited
ones in order to avoid an intersection. The jamming configu-
ration consists of domains of parallel lines and of clusters of
blocked sites. If the depositing objects are not straight lines,
there are also clusters of blocked sites in the jamming con-

Jamming coveragé(«) depends on the shape of the ob- figurations, but their sizes are smaller. Sizes of these clusters
ject and on its dimension. Qualitatively, we could say that itare proportional to the size of depositing objects.
depends on the local geometry of the shape, i.e., on the prob-
ability that the neighboring sites of an adsorbed o_b]ect would V. JAMMING COVERAGES FOR DEPOSITION
be blocke_d by another adsorbgd object. For a fikeé(«) OF MIXTURES OF LINE SEGMENTS
has the highest values for straight lines.

For the same type of shape the jamming coverage de- Jamming coverages for the deposition of mixtures of
creases when the size of the object increases. The plots efraight lines of various lengths on a triangular lattice are
A(x) vs s for the basic shapes from Table Il are shown inalso determined numerically. Simulations are performed for
Fig. 3 and marked with corresponding numbers. The dottetivo-component, three-component, and up to eight-
lines represent the exponential fit of the form component mixtures. In the case of the two-component mix-

. JAMMING COVERAGES AND JAMMING
CONFIGURATIONS ON A TRIANGULAR LATTICE
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8)1'00 number of components is always increased by adding a line
© segment of a greater length.
2 0.98
8 V. CONCLUSION
o
£ 0.96 1 We have studied the single-layer deposition of objects of
g s " various shapes on a triangular lattice. The shapes are made
| ] T .
8 594 - by self-avoiding random walks on the lattice. The approach
a " to the jamming limit is exponential for all the shapes with the
1ma ™ rate o dependent mostly on the order of symmetry of the
0.92 1 shape. The shapes of higher order of symmetry have lower
values of o, i.e., they approach their jamming limit more
0.90 T 1 1T 1 T 1T 1 rapldly' . .
2 3 4 5 6 7 8 The jamming coveragé(e«) depends on the local geom-
n etry of the shape, i.e., on the shape and size of the adsorbing

object. For a fixed length of the walk that makes the shape,
FIG. 6. Dependence af(>2) on the number of componentiine  ¢(«) has the highest values for straight lines, which have the
segments of various lengths the mixture. lowest probability for blocking their neighboring sites. The
jamming coverage decays exponentially with the size of the
ture lines of length =1 and 2 are adsorbed with equal prob- object for small object sizes. If we compare results for RSA
ability. The three-component mixture is made by adding aof straight lines on a square and a triangular lattice, this
line segment of length=3 and so on. Generally, an decay is more rapid for a triangular lattice.
n-component mixture contains lines of length 1,2,...n and Jamming patterns consist of clusters of blocked sites and
all of them are adsorbed with equal probability. A lattice siteof domains of parallel deposited objects. The sizes of clus-
is denoted as inaccessible if it is occupied or it cannot be theers of blocked sites are proportional to the size of deposited
beginning of either of the components, i.e., a line segment obbjects and the sizes of domains of parallel deposited objects
lengthl=1 cannot be placed with one end in that site. Theare greater for elongated shapes.
data are averaged over 100 independent runs for each mix- The jamming coverage for the deposition of mixtures in-
ture. creases with the number of components in the mixture. This
The dependence @f(«) on the number of components in effect is “stronger” than the decrease of the jamming cov-
the mixturen is shown in Fig. 6. We can see that the jam- erage with the maximal length of the components that make
ming coverage increases with in spite of the fact that the the mixture.
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